Exogenous nitric oxide generates ROS and induces cardioprotection: involvement of PKG, mitochondrial KATP channels, and ERK.
نویسندگان
چکیده
We examined whether cGMP-dependent protein kinase (PKG) and mitochondrial ATP-sensitive potassium (K(ATP)) channels are involved in S-nitroso-N-acetyl penicillamine (SNAP)-induced reactive oxygen species (ROS) generation. SNAP significantly increased ROS generation in cardiomyocytes. This increase was suppressed by both 5-hydroxydecanoate (5-HD) and glibenclamide. Direct opening of mitochondrial K(ATP) channels with diazoxide led to ROS generation. The increased ROS generation was reversed by N-(2-mercaptopropionyl)glycine (MPG), a scavenger of ROS. Myxothiazol partially suppressed the ROS generation. KT-5823, an inhibitor of PKG, prevented ROS generation, indicating that PKG is required for ROS generation. In addition, 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP), an activator of PKG, induced ROS generation. The effect of 8-BrcGMP was reversed by either 5-HD or MPG. YC-1, an activator of guanylyl cyclase, also increased ROS production, which was reversed by 5-HD. Neither LY-294002 nor wortmannin, the inhibitors of phosphatidylinositol 3-kinase (PI3-kinase), affected SNAP's action. In a whole heart study, SNAP significantly reduced infarct size. The anti-infarct effect of SNAP was abrogated by either MPG or 5-HD. This effect was also blocked by PD-98059, an ERK inhibitor, but not by LY-294002. A Western blotting study showed that SNAP significantly enhanced phosphorylation of ERK, which was reversed by MPG. These results suggest that SNAP-induced ROS generation is mediated by activation of PKG and mitochondrial K(ATP) channels and that opening of mitochondrial K(ATP) channels is the downstream event of PKG activation. ROS and mitochondrial K(ATP) channels participate in the anti-infarct effect of SNAP. Moreover, phosphorylation of ERK is the downstream signaling event of ROS and plays a role in the cardioprotection of SNAP.
منابع مشابه
Exploring the role and inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning induced cardioprotection in rats
Objective(s): This study explored the inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning (RIPC) conferred cardioprotection. Materials and Methods: Blood pressure cuff was placed around the hind limb of the animal and RIPC was performed by 4 cycles of infla...
متن کاملNitric oxide-cGMP-protein kinase G signaling pathway induces anoxic preconditioning through activation of ATP-sensitive K+ channels in rat hearts.
Nitric oxide (NO) plays an important role in anoxic preconditioning to protect the heart against ischemia-reperfusion injuries. The present work was performed to study better the NO-cGMP-protein kinase G (PKG) signaling pathway in the activation of both sarcolemmal and mitochondrial ATP-sensitive K+ (KATP) channels during anoxic preconditioning (APC) and final influence on reducing anoxia-reper...
متن کاملMechanism of reactive oxygen species generation after opening of mitochondrial KATP channels.
OPENING of the ATP-sensitive K (KATP) channel mediates the cardioprotective effect induced by pathophysiological stressors such as ischemic preconditioning (IPC) (15, 29), heat shock (19), and pharmacological agents, including adenosine (5), ACh (26), opioids (12), monophosphoryl lipid A (31), phosphodiesterase 5A (PDE5A) inhibitors (24, 27), and mTOR inhibitor, rapamycin (20). In addition, dir...
متن کاملCardioprotection by H2S engages a cGMP-dependent protein kinase G/phospholamban pathway.
AIMS H2S is known to confer cardioprotection; however, the pathways mediating its effects in vivo remain incompletely understood. The purpose of the present study is to evaluate the contribution of cGMP-regulated pathways in the infarct-limiting effect of H2S in vivo. METHODS AND RESULTS Anaesthetized rabbits were subjected to myocardial ischaemia (I)/reperfusion (R), and infarct size was det...
متن کاملStimulation of neuronal KATP channels by cGMP-dependent protein kinase: involvement of ROS and 5-hydroxydecanoate-sensitive factors in signal transduction.
The ATP-sensitive potassium (K(ATP)) channel couples intracellular metabolic state to membrane excitability. Recently, we demonstrated that neuronal K(ATP) channels are functionally enhanced by activation of a nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) signaling cascade. In this study, we further investigated the intracellular mechanism underlying PKG stimulation of neuronal K(A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 286 4 شماره
صفحات -
تاریخ انتشار 2004